Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 113
Filter
1.
PLoS One ; 19(4): e0301579, 2024.
Article in English | MEDLINE | ID: mdl-38635664

ABSTRACT

We present here the solution structures of the protein thioredoxin-1 from Plasmodium falciparum (PfTrx-1), in its reduced and oxidized forms. They were determined by high-resolution NMR spectroscopy at 293 K on uniformly 13C-, 15N-enriched, matched samples allowing to identification of even small structural differences. PfTrx-1 shows an α/ß-fold with a mixed five-stranded ß-sheet that is sandwiched between 4 helices in a ß1 α1 ß2 α2 ß3 α3 ß4 ß5 α4 topology. The redox process of the CGPC motif leads to significant structural changes accompanied by larger chemical shift changes from residue Phe25 to Ile36, Thr70 to Thr74, and Leu88 to Asn91. By high-field high-pressure NMR spectroscopy, rare conformational states can be identified that potentially are functionally important and can be used for targeted drug development. We performed these experiments in the pressure range from 0.1 MPa to 200 MPa. The mean combined, random-coil corrected B1* values of reduced and oxidized thioredoxin are quite similar with -0.145 and -0.114 ppm GPa-1, respectively. The mean combined, random-coil corrected B2* values in the reduced and oxidized form are 0.179 and 0.119 ppm GPa-2, respectively. The mean ratios of the pressure coefficients B2/B1 are -0.484 and -0.831 GPa-1 in the reduced and oxidized form respectively. They differ at some points in the structure after the formation of the disulfide bond between C30 and C33. The thermodynamical description of the pressure dependence of chemical shifts requires the assumption of at least three coexisting conformational states of PfTrx-1. These three conformational states were identified in the reduced as well as in the oxidized form of the protein, therefore, they represent sub-states of the two main oxidation states of PfTrx-1.


Subject(s)
Plasmodium falciparum , Thioredoxins , Amino Acid Sequence , Plasmodium falciparum/metabolism , Thioredoxins/metabolism , Magnetic Resonance Spectroscopy , Protein Structure, Secondary , Oxidation-Reduction
2.
Chemistry ; : e202400304, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38647362

ABSTRACT

In this work, we experimentally investigate the potency of high pressure to drive a protein toward an excited state where an inhibitor targeted for this state can bind. Ras proteins are small GTPases cycling between active GTP-bound and inactive GDP-bound states. Various states of GTP-bound Ras in active conformation coexist in solution, amongst them, state 2 which binds to effectors, and state 1, weakly populated at ambient conditions, which has a low affinity for effectors. Zn2+-cyclen is an allosteric inhibitor of Ras protein, designed to bind specifically to the state 1. In H-Ras(wt).Mg2+.GppNHp crystals soaked with Zn2+-cyclen, no binding could be observed, as expected in the state 2 conformation which is the dominant state at ambient pressure. Interestingly, Zn2+-cyclen binding is observed at 500 MPa pressure, close to the nucleotide, in Ras protein that is driven by pressure to a state 1 conformer. The unknown binding mode of Zn2+-cyclen to H-Ras can thus be fully characterized in atomic details. As a more general conjunction from our study, high pressure x-ray crystallography turns out to be a powerful method to induce transitions allowing drug binding in proteins that are in low-populated conformations at ambient conditions, enabling the design of specific inhibitors.

3.
Phys Chem Chem Phys ; 26(7): 6386-6395, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38315169

ABSTRACT

Interpreting NMR experiments benefits from first-principles predictions of chemical shifts. Reaching the accuracy limit of theory is relevant for unambiguous structural analysis and dissecting theoretical approximations. Since accurate chemical shift measurements are based on using internal reference compounds such as trimethylsilylpropanesulfonate (DSS), a detailed comparison of experimental with theoretical data requires simultaneous consideration of both target and reference species ensembles in the same solvent environment. Here we show that ab initio molecular dynamics simulations to generate liquid-state ensembles of target and reference compounds, including explicitly their short-range solvation environments and combined with quantum-mechanical solvation models, allows for predicting highly accurate 1H (∼0.1-0.5 ppm) and aliphatic 13C (∼1.5 ppm) chemical shifts for aqueous solutions of the model compounds trimethylamine N-oxide (TMAO) and N-methylacetamide (NMA), referenced to DSS without any system-specific adjustments. This encompasses the two peptide bond conformations of NMA identified by NMR. The results are used to derive a general-purpose guideline set for predictive NMR chemical shift calculations of NMA in the liquid state and to identify artifacts of force field models. Accurate predictions are only obtained if a sufficient number of explicit water molecules is included in the quantum-mechanical calculations, disproving a purely electrostatic model of the solvent effect on chemical shifts.

4.
Lipids Health Dis ; 22(1): 42, 2023 Mar 24.
Article in English | MEDLINE | ID: mdl-36964528

ABSTRACT

BACKGROUND: Type 2 diabetes mellitus (T2D) and corresponding borderline states, impaired fasting glucose (IFG) and/or glucose tolerance (IGT), are associated with dyslipoproteinemia. It is important to distinguish between factors that cause T2D and that are the direct result of T2D. METHODS: The lipoprotein subclass patterns of blood donors with IFG, IGT, with IFG combined with IGT, and T2D are analyzed by nuclear magnetic resonance (NMR) spectroscopy. The development of lipoprotein patterns with time is investigated by using samples retained for an average period of 6 years. In total 595 blood donors are classified by oral glucose tolerance test (oGTT) and their glycosylated hemoglobin (HbA1c) concentrations. Concentrations of lipoprotein particles of 15 different subclasses are analyzed in the 10,921 NMR spectra recorded under fasting and non-fasting conditions. The subjects are assumed healthy according to the strict regulations for blood donors before performing the oGTT. RESULTS: Under fasting conditions manifest T2D exhibits a significant concentration increase of the smallest HDL particles (HDL A) combined with a decrease in all other HDL subclasses. In contrast to other studies reviewed in this paper, a general concentration decrease of all LDL particles is observed that is most prominent for the smallest LDL particles (LDL A). Under normal nutritional conditions a large, significant increase of the concentrations of VLDL and chylomicrons is observed for all groups with IFG and/or IGT and most prominently for manifest T2D. As we show it is possible to obtain an estimate of the concentrations of the apolipoproteins Apo-A1, Apo-B100, and Apo-B48 from the NMR data. In the actual study cohort, under fasting conditions the concentrations of the lipoproteins are not increased significantly in T2D, under non-fasting conditions only Apo-B48 increases significantly. CONCLUSION: In contrast to other studies, in our cohort of "healthy" blood donors the T2D associated dyslipoproteinemia does not change the total concentrations of the lipoprotein particles produced in the liver under fasting and non-fasting conditions significantly but only their subclass distributions. Compared to the control group, under non-fasting conditions participants with IGT and IFG or T2D show a substantial increase of plasma concentrations of those lipoproteins that are produced in the intestinal tract. The intestinal insulin resistance becomes strongly observable.


Subject(s)
Diabetes Mellitus, Type 2 , Glucose Intolerance , Prediabetic State , Humans , Blood Glucose , Lipoproteins , Magnetic Resonance Spectroscopy
5.
Chem Sci ; 13(7): 2001-2010, 2022 Feb 16.
Article in English | MEDLINE | ID: mdl-35308861

ABSTRACT

In this work, we experimentally investigate the allosteric transitions between conformational states on the Ras oncogene protein using high pressure crystallography. Ras protein is a small GTPase involved in central regulatory processes occurring in multiple conformational states. Ras acts as a molecular switch between active GTP-bound, and inactive GDP-bound states, controlling essential signal transduction pathways. An allosteric network of interactions between the effector binding regions and the membrane interacting regions is involved in Ras cycling. The conformational states which coexist simultaneously in solution possess higher Gibbs free energy than the ground state. Equilibria between these states can be shifted by applying pressure favouring conformations with lower partial molar volume, and has been previously analyzed by high-pressure NMR spectroscopy. High-pressure macromolecular crystallography (HPMX) is a powerful tool perfectly complementary to high-pressure NMR, allowing characterization at the molecular level with a high resolution the different allosteric states involved in the Ras cycling. We observe a transition above 300 MPa in the crystal leading to more stable conformers. Thus, we compare the crystallographic structures of Ras(wt)·Mg2+·GppNHp and Ras(D33K)·Mg2+·GppNHp at various high hydrostatic pressures. This gives insight into per-residue descriptions of the structural plasticity involved in allosteric equilibria between conformers. We have mapped out at atomic resolution the different segments of Ras protein which remain in the ground-state conformation or undergo structural changes, adopting excited-energy conformations corresponding to transient intermediate states. Such in crystallo phase transitions induced by pressure open the possibility to finely explore the structural determinants related to switching between Ras allosteric sub-states without any mutations nor exogenous partners.

6.
Protein J ; 39(5): 487-500, 2020 10.
Article in English | MEDLINE | ID: mdl-33094361

ABSTRACT

Prokaryotic cold shock proteins (CSPs) are considered to play an important role in the transcriptional and translational regulation of gene expression, possibly by acting as transcription anti-terminators and "RNA chaperones". They bind with high affinity to single-stranded nucleic acids. Here we report the binding epitope of TmCsp from Thermotoga maritima for both single-stranded DNA and RNA, using heteronuclear 2D NMR spectroscopy. At "physiological" growth temperatures of TmCsp (≥ 343 K), all oligonucleotides studied have dissociation constants between 1.6 ((dT)7) and 25.2 ((dA)7) µM as determined by tryptophan fluorescence quenching. Reduction of the temperature to 303 K leads to a pronounced increase of affinity for thymidylate (dT)7 and uridylate (rU)7 heptamers with dissociation constants of 4.0 and 10.8 nM, respectively, whereas the weak binding of TmCsp to cytidylate, adenylate, and guanylate heptamers (dC)7, (dA)7, and (dT)7 is almost unaffected by temperature. The change of affinities of TmCsp for (dT)7 and (rU)7 by approximately 3 orders of magnitude shows that it represents a cold chock sensor that switches on the cold shock reaction of the cell. A temperature dependent conformational switch of the protein is required for this action. The binding epitope on TmCsp for the ssDNA and RNA heptamers is very similar and comprises ß-strands 1 and 2, the loop ß1-ß2 as well as the loops connecting ß3 with ß4 and ß4 with ß5. Besides the loop regions, surprisingly, mainly the RNA-binding motif RNP1 is involved in ssDNA and RNA binding, while only two amino acids, H28 and W29, of the postulated RNA-binding motif RNP2 interact with the uridylate and thymidylate homonucleotides, although a high affinity in the nanomolar range is achieved. This is in contrast to the binding properties of other CSPs or cold shock domains, where RNP1 as well as RNP2 are involved in binding. TmCsp takes up a unique position since it is the only one which possesses a tryptophan residue instead of a usually highly conserved phenylalanine or tyrosine residue at the end of RNP2. NMR titrations suggest that neither (dT)7 nor (rU)7 represent the full binding motif and that non-optimal intercalation of W29 into these oligonucleotides blocks the access of the RNP2 site to the DNA or RNA. NMR-experiments with (dA)7 suggest an interaction of W29 with the adenine ring. Full binding seems to require at least one single purine base well-positioned within a thymine- or uracil-rich stretch of nucleic acids.


Subject(s)
Bacterial Proteins/chemistry , Cold Shock Proteins and Peptides/chemistry , DNA-Binding Proteins/chemistry , Epitopes/chemistry , RNA-Binding Proteins/chemistry , Thermotoga maritima/chemistry , Amino Acid Motifs , Bacterial Proteins/genetics , Cold Shock Proteins and Peptides/genetics , DNA-Binding Proteins/genetics , Epitopes/genetics , RNA-Binding Proteins/genetics , Thermotoga maritima/genetics
8.
J Biomol NMR ; 74(8-9): 381-399, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32572797

ABSTRACT

For interpreting the pressure induced shifts of resonance lines of folded as well as unfolded proteins the availability of data from well-defined model systems is indispensable. Here, we report the pressure dependence of 1H and 15N chemical shifts of the side chain atoms in the protected tetrapeptides Ac-Gly-Gly-Xxx-Ala-NH2 (Xxx is one of the 20 canonical amino acids) measured at 800 MHz proton frequency. As observed earlier for other nuclei the chemical shifts of the side chain nuclei have a nonlinear dependence on pressure in the range from 0.1 to 200 MPa. The pressure response is described by a second degree polynomial with the pressure coefficients B1 and B2 that are dependent on the atom type and type of amino acid studied. A number of resonances could be assigned stereospecifically including the 1H and 15N resonances of the guanidine group of arginine. In addition, stereoselectively isotope labeled SAIL amino acids were used to support the stereochemical assignments. The random-coil pressure coefficients are also dependent on the neighbor in the sequence as an analysis of the data shows. For Hα and HN correction factors for different amino acids were derived. In addition, a simple correction of compression effects in thermodynamic analysis of structural transitions in proteins was derived on the basis of random-coil pressure coefficients.


Subject(s)
Hydrogen/chemistry , Models, Molecular , Peptides/chemistry , Pressure , Protein Conformation , Protons , Algorithms , Amino Acid Sequence , Amino Acids/chemistry , Hydrogen Bonding , Models, Theoretical , Nuclear Magnetic Resonance, Biomolecular
9.
Biomol NMR Assign ; 14(1): 141-146, 2020 04.
Article in English | MEDLINE | ID: mdl-32052266

ABSTRACT

CanA from Pyrodictium abyssi forms a heat-resistant organic hollow-fiber network together with CanB and CanC. An N-terminally truncated construct of CanA (K1-CanA) gave NMR spectra of good quality that could be assigned by three-dimensional NMR methods on 15N and 13C-15N enriched protein. We assigned the chemical shifts of 96% of all backbone 1HN atoms, 98% of all backbone 15N atoms, 100% of all 13Cα atoms, 100% of all 1Hα atoms, 90% of all 13C' atoms, and 100% of the 13Cß atoms. Two short helices and 10 ß-strands are estimated from an analysis of the chemical shifts leading to a secondary structure content of K1-CanA of 6% helices, 44% ß-pleated sheets, and 50% coils.


Subject(s)
Archaea/metabolism , Archaeal Proteins/chemistry , Nuclear Magnetic Resonance, Biomolecular , Amino Acid Sequence , Archaeal Proteins/isolation & purification , Peptides/chemistry , Protein Structure, Secondary , Proteolysis
10.
Biophys Chem ; 257: 106258, 2020 02.
Article in English | MEDLINE | ID: mdl-31881504

ABSTRACT

Recent methodological progress in quantum-chemical calculations using the "embedded cluster reference interaction site model" (EC-RISM) integral equation theory is reviewed in the context of applying it as a solvation model for calculating pressure-dependent thermodynamic and spectroscopic properties of molecules immersed in water. The methodology is based on self-consistent calculations of electronic and solvation structure around dissolved molecules where pressure enters the equations via an appropriately chosen solvent response function and the pure solvent density. Besides specification of a dispersion-repulsion force field for solute-solvent interactions, the EC-RISM approach derives the electrostatic interaction contributions directly from the wave function. We further develop and apply the method to a variety of benchmark cases for which computational or experimental reference data are either available in the literature or are generated specifically for this purpose in this work. Starting with an enhancement to predict hydration free energies at non-ambient pressures, which is the basis for pressure-dependent molecular population estimation, we demonstrate the performance on the calculation of the autoionization constant of water. Spectroscopic problems are addressed by studying the biologically relevant small osmolyte TMAO (trimethylamine N-oxide). Pressure-dependent NMR shifts are predicted and compared to experiments taking into account proper computational referencing methods that extend earlier work. The experimentally observed IR blue-shifts of certain vibrational bands of TMAO as well as of the cyanide anion are reproduced by novel methodology that allows for weighing equilibrium and non-equilibrium solvent relaxation effects. Taken together, the model systems investigated allow for an assessment of the reliability of the EC-RISM approach for studying pressure-dependent biophysical processes.


Subject(s)
Models, Chemical , Magnetic Resonance Spectroscopy , Methylamines/chemical synthesis , Methylamines/chemistry , Molecular Dynamics Simulation , Pressure , Quantum Theory
11.
Biophys Chem ; 254: 106261, 2019 11.
Article in English | MEDLINE | ID: mdl-31522070

ABSTRACT

The study of the pressure response by NMR spectroscopy provides information on the thermodynamics of conformational equilibria in proteins and nucleic acids. For obtaining a database for expected pressure effects on free nucleotides and nucleotides bound in macromolecular complexes, the pressure response of 1H chemical shifts and J-coupling constants of the purine 5'-ribonucleotides AMP, ADP, ATP, GMP, GDP, and GTP were studied in the absence and presence of Mg2+-ions. Experiments are supported by quantum-chemical calculations of populations and chemical shift differences in order to corroborate structural interpretations and to estimate missing data for AMP. The preference of the ribose S puckering obtained from the analysis of the experimental J-couplings is also confirmed by the calculations. In addition, the pressure response of the non-hydrolysable GTP analogues GppNHp, GppCH2p, and GTPγS was examined within a pressure range up to 200 MPa. As observed earlier for 31P NMR chemical shifts of these nucleotides the pressure dependence of chemical shifts is clearly non-linear in most cases. In di- and tri-phospho nucleosides, the resonances of the two protons bound to the ribose 5' carbon are non-equivalent and can be observed separately. The gg-rotamer at C4'- C5' bond is strongly preferred and the downfield shifted resonance can be assigned to the H5″ proton in the nucleotides. In contrast, in adenosine itself the frequencies of the two resonances are interchanged.


Subject(s)
Proton Magnetic Resonance Spectroscopy , Purine Nucleotides/chemistry , Magnesium/chemistry , Pressure
12.
Biophys Chem ; 254: 106239, 2019 11.
Article in English | MEDLINE | ID: mdl-31442763

ABSTRACT

The intrinsically disordered human islet amyloid polypeptide (hIAPP) is a 37 amino acid peptide hormone that is secreted by pancreatic beta cells along with glucagon and insulin. The glucose metabolism of humans is regulated by a balanced ratio of insulin and hIAPP. The disturbance of this balance can result in the development of type-2 diabetes mellitus (T2DM), whose pathogeny is associated by self-assembly induced aggregation and amyloid deposits of hIAPP into nanofibrils. Here, we report pressure- and temperature-induced changes of NMR chemical shifts of monomeric hIAPP in bulk solution to elucidate the contribution of conformational substates in a residue-specific manner in their role as molecular determinants for the initial self-assembly. The comparison with a similar peptide, the Alzheimer peptide Aß(1-40), which is leading to self-assembly induced aggregation and amyloid deposits as well, reveals that in both peptides highly homologous areas exist (Q10-|L16 and N21-L27 in hIAPP and Q15-A21 and S26-I32 in Aß). The N-terminal area of hIAPP around amino acid residues 3-20 displays large differences in pressure sensitivity compared to Aß, pinpointing to a different structural ensemble in this sequence element which is of helical origin in hIAPP. Knowledge of the structural nature of the highly amyloidogenic hIAPP and the differences with respect to the conformational ensemble of Aß(1-40) will help to identify molecular determinants of self-assembly as well as cross-seeded assembly initiated aggregation and help facilitate the rational design of drugs for therapeutic use.


Subject(s)
Islet Amyloid Polypeptide/chemistry , Nuclear Magnetic Resonance, Biomolecular , Amino Acid Sequence , Amyloid beta-Peptides/chemistry , Amyloid beta-Peptides/metabolism , Humans , Islet Amyloid Polypeptide/metabolism , Molecular Dynamics Simulation , Peptide Fragments/chemistry , Peptide Fragments/metabolism , Pressure , Protein Conformation , Substrate Specificity , Temperature
13.
J Lipid Res ; 60(9): 1516-1534, 2019 09.
Article in English | MEDLINE | ID: mdl-31239285

ABSTRACT

NMR-based quantification of human lipoprotein (sub)classes is a powerful high-throughput method for medical diagnostics. We evaluated select proton NMR signals of serum lipoproteins for elucidating the physicochemical features and the absolute NMR visibility of their lipids. We separated human lipoproteins of different subclasses by ultracentrifugation and analyzed them by 1H NMR spectroscopy at different temperatures (283-323 K) and pressures (0.1-200 MPa). In parallel, we determined the total lipid content by extraction with chloroform/methanol. The visibility of different lipids in the 1H NMR spectra strongly depends on temperature and pressure: it increases with increasing temperatures but decreases with increasing pressures. Even at 313 K, only part of the lipoprotein is detected quantitatively. In LDL and in HDL subclasses HDL2 and HDL3, only 39%, 62%, and 90% of the total cholesterol and only 73%, 70%, and 87% of the FAs are detected, respectively. The choline head groups show visibilities of 43%, 75%, and 87% for LDL, HDL2, and HDL3, respectively. The description of the NMR visibility of lipid signals requires a minimum model of three different compartments, A, B, and C. The thermodynamic analysis of compartment B leads to melting temperatures between 282 K and 308 K and to enthalpy differences that vary for the different lipoproteins as well as for the reporter groups selected. In summary, we describe differences in NMR visibility of lipoproteins and variations in biophysical responses of functional groups that are crucial for the accuracy of absolute NMR quantification.


Subject(s)
Lipoproteins/analysis , Magnetic Resonance Spectroscopy/methods , Lipoproteins, IDL/analysis , Lipoproteins, LDL/analysis , Lipoproteins, VLDL/analysis , Metabolomics , Pressure , Temperature
14.
Chem Commun (Camb) ; 54(26): 3294-3297, 2018 Mar 27.
Article in English | MEDLINE | ID: mdl-29537428

ABSTRACT

Pressure can shift the polymer-monomer equilibrium of Aß, increasing pressure first leads to a release of Aß-monomers, surprisingly at pressures higher than 180 MPa repolymerization is induced. By high pressure NMR spectroscopy, differences of partial molar volumes ΔV0 and compressibility factors Δß' of polymerization were determined at different temperatures. The d-enantiomeric peptides RD2 and RD2D3 bind to monomeric Aß with affinities substantially higher than those determined for fibril formation. By reducing the Aß concentration below the critical concentration for polymerization they inhibit the formation of toxic oligomers. Chemical shift perturbation allows the identification of the binding sites. The d-peptides are candidates for drugs preventing Alzheimer's disease. We show that RD2D3 has a positive effect on the cognitive behaviour of transgenic (APPSwDI) mice prone to Alzheimer's disease. The heterodimer complexes have a smaller Stokes radius than Aß alone indicating the recognition of a more compact conformation of Aß identified by high pressure NMR before.


Subject(s)
Amyloid beta-Peptides/metabolism , Peptides/metabolism , Alzheimer Disease/drug therapy , Alzheimer Disease/pathology , Amyloid beta-Peptides/chemistry , Animals , Binding Sites , Dimerization , Humans , Mice , Mice, Transgenic , Nuclear Magnetic Resonance, Biomolecular , Peptides/chemistry , Peptides/therapeutic use , Protein Binding , Stereoisomerism , Thermodynamics
15.
J Biomol NMR ; 69(2): 53-67, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28913741

ABSTRACT

For evaluating the pressure responses of folded as well as intrinsically unfolded proteins detectable by NMR spectroscopy the availability of data from well-defined model systems is indispensable. In this work we report the pressure dependence of 13C chemical shifts of the side chain atoms in the protected tetrapeptides Ac-Gly-Gly-Xxx-Ala-NH2 (Xxx, one of the 20 canonical amino acids). Contrary to expectation the chemical shifts of a number of nuclei have a nonlinear dependence on pressure in the range from 0.1 to 200 MPa. The size of the polynomial pressure coefficients B 1 and B 2 is dependent on the type of atom and amino acid studied. For HN, N and Cα the first order pressure coefficient B 1 is also correlated to the chemical shift at atmospheric pressure. The first and second order pressure coefficients of a given type of carbon atom show significant linear correlations suggesting that the NMR observable pressure effects in the different amino acids have at least partly the same physical cause. In line with this observation the magnitude of the second order coefficients of nuclei being direct neighbors in the chemical structure also are weakly correlated. The downfield shifts of the methyl resonances suggest that gauche conformers of the side chains are not preferred with pressure. The valine and leucine methyl groups in the model peptides were assigned using stereospecifically 13C enriched amino acids with the pro-R carbons downfield shifted relative to the pro-S carbons.


Subject(s)
Carbon Isotopes/chemistry , Peptides/chemistry , Pressure , Amino Acids/chemistry , Magnetic Resonance Spectroscopy , Models, Chemical , Peptides/chemical synthesis
16.
Biophys Chem ; 231: 50-54, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28395928

ABSTRACT

High pressure NMR spectroscopy is a powerful method for identifying rare conformational states of proteins from the pressure response of their chemical shifts. Many proteins have bound adenine nucleotides at their active centers, in most cases in a complex with Mg2+-ions. The 31P NMR signals of phosphate groups of the nucleotides can be used as probes for conformational transitions in the proteins themselves. For distinguishing protein specific pressure effects from trivial pressure responses not due to the protein interaction, data of the pressure response of the free nucleotides must be available. Therefore, the pressure response of 31P chemical shifts of the adenine nucleotides AMP, ADP, and ATP and their Mg2+-complexes has been determined at pH values several units distant from the respective pK-values. It is clearly non-linear for most of the resonances. A negative first order pressure coefficient B1 was determined for all 31P resonances except Mg2+·AMP indicating an upfield shift of the resonances with pressure. The smallest and largest negative values are obtained for the α-phosphate group of ADP and ß-phosphate group of Mg2+·ATP with -0.32 and -4.59ppm/GPa, respectively. With exception of the α-phosphate group of Mg2+·AMP the second order pressure coefficients are positive leading to a saturation like behaviour. The pressure response of the adenine nucleotides is similar but not identical to that observed earlier for guanine nucleotides. The obtained data show that the chemical shift pressure response of the different phosphate groups is rather different dependent on the position of phosphate group in the nucleotide and the nucleotide used.


Subject(s)
Adenine Nucleotides/chemistry , Adenosine Diphosphate/chemistry , Adenosine Monophosphate/chemistry , Adenosine Triphosphate/chemistry , Magnesium/chemistry , Magnetic Resonance Spectroscopy , Phosphorus/chemistry , Pressure
17.
J Biomol NMR ; 67(2): 157-164, 2017 02.
Article in English | MEDLINE | ID: mdl-28197852

ABSTRACT

Side chain amide protons of asparagine and glutamine residues in random-coil peptides are characterized by large chemical shift differences and can be stereospecifically assigned on the basis of their chemical shift values only. The bimodal chemical shift distributions stored in the biological magnetic resonance data bank (BMRB) do not allow such an assignment. However, an analysis of the BMRB shows, that a substantial part of all stored stereospecific assignments is not correct. We show here that in most cases stereospecific assignment can also be done for folded proteins using an unbiased artificial chemical shift data base (UACSB). For a separation of the chemical shifts of the two amide resonance lines with differences ≥0.40 ppm for asparagine and differences ≥0.42 ppm for glutamine, the downfield shifted resonance lines can be assigned to Hδ21 and Hε21, respectively, at a confidence level >95%. A classifier derived from UASCB can also be used to correct the BMRB data. The program tool AssignmentChecker implemented in AUREMOL calculates the Bayesian probability for a given stereospecific assignment and automatically corrects the assignments for a given list of chemical shifts.


Subject(s)
Amides/chemistry , Asparagine/chemistry , Glutamine/chemistry , Magnetic Resonance Spectroscopy , Proteins/chemistry , Protons , Algorithms , Magnetic Resonance Spectroscopy/methods , Models, Chemical , Nuclear Magnetic Resonance, Biomolecular , Software
18.
J Biomol NMR ; 67(1): 1-13, 2017 01.
Article in English | MEDLINE | ID: mdl-28012125

ABSTRACT

The 31P NMR pressure response of guanine nucleotides bound to proteins has been studied in the past for characterizing the pressure perturbation of conformational equilibria. The pressure response of the 31P NMR chemical shifts of the phosphate groups of GMP, GDP, and GTP as well as the commonly used GTP analogs GppNHp, GppCH2p and GTPγS was measured in the absence and presence of Mg2+-ions within a pressure range up to 200 MPa. The pressure dependence of chemical shifts is clearly non-linear. For all nucleotides a negative first order pressure coefficient B 1 was determined indicating an upfield shift of the resonances with pressure. With exception of the α-phosphate group of Mg2+·GMP and Mg2+·GppNHp the second order pressure coefficients are positive. To describe the data of Mg2+·GppCH2p and GTPγS a Taylor expansion of 3rd order is required. For distinguishing pH effects from pressure effects a complete pH titration set is presented for GMP, as well as GDP and GTP in absence and presence of Mg2+ ions using indirect referencing to DSS under identical experimental conditions. By a comparison between high pressure 31P NMR data on free Mg2+-GDP and Mg2+-GDP in complex with the proto-oncogene Ras we demonstrate that pressure induced changes in chemical shift are clearly different between both forms.


Subject(s)
Guanine Nucleotides/chemistry , Magnetic Resonance Spectroscopy , Hydrogen-Ion Concentration , Isotope Labeling , Magnetic Resonance Spectroscopy/methods , Metals
20.
J Phys Chem B ; 120(27): 6575-86, 2016 07 14.
Article in English | MEDLINE | ID: mdl-27314563

ABSTRACT

Actin can be found in nearly all eukaryotic cells and is responsible for many different cellular functions. The polymerization process of actin has been found to be among the most pressure sensitive processes in vivo. In this study, we explored the effects of chaotropic and kosmotropic cosolvents, such as urea and the compatible osmolyte trimethylamine-N-oxide (TMAO), and, to mimic a more cell-like environment, crowding agents on the pressure and temperature stability of globular actin (G-actin). The temperature and pressure of unfolding as well as thermodynamic parameters upon unfolding, such as enthalpy and volume changes, have been determined by fluorescence spectroscopy over a wide range of temperatures and pressures, ranging from 10 to 80 °C and from 1 to 3000 bar, respectively. Complementary high-pressure NMR studies revealed additional information on the existence of native-like conformational substates of G-actin as well as a molten-globule-like state preceding the complete pressure denaturation. Different from the chaotropic agent urea, TMAO increases both the temperature and pressure stability for the protein most effectively. The Gibbs free energy differences of most of the native substates detected are not influenced significantly by TMAO. In mixtures of these osmolytes, urea counteracts the stabilizing effect of TMAO to some extent. Addition of the crowding agent Ficoll increases the temperature and pressure stability even further, thereby allowing sufficient stability of the protein at temperature and pressure conditions encountered under extreme environmental conditions on Earth.


Subject(s)
Actins/chemistry , Actins/metabolism , Methylamines/chemistry , Nuclear Magnetic Resonance, Biomolecular , Pressure , Protein Stability , Solvents/chemistry , Spectrometry, Fluorescence , Temperature , Thermodynamics , Urea/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...